Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules.
نویسندگان
چکیده
Although platelets have been implicated in the pathogenesis of vascular diseases, little is known about factors that regulate interactions between platelets and the vessel wall under physiological conditions. The objectives of this study were to 1) define the contribution of nitric oxide (NO) to endotoxin (lipopolysaccharide, LPS)-induced platelet-endothelial cell (P/E) adhesion in murine intestinal venules and 2) determine whether the antiadhesive action of NO is mediated by soluble guanylate cyclase (sGC). Adhesive interactions between platelets and endothelial cells were monitored by intravital microscopy. LPS administration into control wild-type mice (WT) resulted in a >15-fold increase in P/E adhesion. Similar responses were observed using endothelial NO synthase (eNOS)-deficient platelets. However, treatment with the NO donor diethylenetriamine-nitric oxide (DETA-NO) attenuated the P/E adhesion response to LPS, whereas the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester or eNOS deficiency resulted in an exacerbation. P/E adhesion response did not differ between LPS-treated WT and inducible NOS-deficient mice. Inhibition of sGC abolished the attenuating effects of DETA-NO, whereas the sGC activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) reduced LPS-induced P/E adhesion. These findings indicate that 1) eNOS-derived NO attenuates endotoxin-induced P/E adhesion and 2) sGC is responsible for the antiadhesive action of NO.
منابع مشابه
Roles of platelet and endothelial cell COX-1 in hypercholesterolemia-induced microvascular dysfunction.
Aspirin is a common preventative therapy in patients at risk for cardiovascular diseases, yet little is known about how aspirin protects the vasculature in hypercholesterolemia. The present study determines whether aspirin, nitric oxide-releasing aspirin (NCX-4016), a selective cyclooxygenase (COX)-1 inhibitor (SC560), or genetic deficiency of COX-1 prevents the inflammatory and prothrombogenic...
متن کاملHMG-CoA reductase inhibitor attenuates platelet adhesion in intestinal venules of hypercholesterolemic mice.
Whereas the anti-inflammatory properties of statins have been extensively studied, less attention has been devoted to the antithrombogenic effects of these drugs. We evaluated the effect of short-term (18 h) treatment with pravastatin (1 mg/kg) on hypercholesterolemia-induced platelet-endothelial (P/E) cell adhesion in intestinal venules. Mice were placed on either a normal diet (ND) or cholest...
متن کاملSuperoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules.
Platelets have been implicated in the pathogenesis of different diseases of the vascular system, including atherosclerosis, sepsis, and ischemia-reperfusion injury; however, relatively little is known about the factors that regulate the interactions between circulating platelets and the vessel wall. The objective of this study was to define the contribution of superoxide to LPS-induced platelet...
متن کاملExpedited Publications MXodulation of Ischemia/Reperfusion-Induced Microvascular Dysfunction by Nitric Oxide
Leukocyte-endothelial cell adhesion and an altered metabolism of endothelial cell-derived nitric oxide (NO) have been implicated in the microvascular dysfunction associated with ischemia/reperfusion (I/R). The objective of this study was to determine whether NO donors can attenuate the reperfusion-induced increase in venular albumin leakage via an effect on leukocyte-endothelial cell adhesion. ...
متن کاملBradykinin-induced proinflammatory signaling mechanisms.
Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B(2) receptor anta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 282 3 شماره
صفحات -
تاریخ انتشار 2002